Provis JM, Penfold PL, Cornish EE, Sandercoe TM, Madigan MC. Anatomy and development of the macula: specialisation and the vulnerability to macular degeneration. Clin Experimental Optometry. 2005;88(5):269–81.
Cholkar K, Dasari SR, Pal D, Mitra AK. Eye: anatomy, physiology and barriers to drug delivery. Ocular transporters and receptors: Elsevier; 2013;1–36.
Tomiyama H, Matsumoto C, Shiina K, Yamashina A. Brachial-ankle PWV: current status and future directions as a useful marker in the management of cardiovascular disease and/or cardiovascular risk factors. J Atheroscler Thromb. 2016;23(2):128–46.
Ohkuma T, Ninomiya T, Tomiyama H, Kario K, Hoshide S, Kita Y, et al. Brachial-ankle pulse wave velocity and the risk prediction of cardiovascular disease: an individual participant data meta-analysis. Hypertension. 2017;69(6):1045–52.
Townsend RR, Wilkinson IB, Schiffrin EL, Avolio AP, Chirinos JA, Cockcroft JR, et al. Recommendations for improving and standardizing vascular research on arterial stiffness: a scientific statement from the American Heart Association. Hypertension. 2015;66(3):698–722.
Ogawa O, Hiraoka K, Watanabe T, Kinoshita J, Kawasumi M, Yoshii H, et al. Diabetic retinopathy is associated with pulse wave velocity, not with the augmentation index of pulse waveform. Cardiovasc Diabetol. 2008;7:1–5.
Liu S-C, Chuang S-M, Shih H-M, Wang C-H, Tsai M-C, Lee C-C. High pulse wave velocity is associated with the severity of diabetic retinopathy in patients with type 2 diabetes. J Investig Med. 2020;68(6):1159–65.
Aydin Kaderli A, Kaderli B, Gullulu S, Avci R. Impaired aortic stiffness and pulse wave velocity in patients with branch retinal vein occlusion. Graefe’s Archive Clin Experimental Ophthalmol. 2010;248:369–74.
Sato E, Feke GT, Appelbaum EY, Menke MN, Trempe CL, McMeel JW. Association between systemic arterial stiffness and age-related macular degeneration. Graefe’s Archive Clin Experimental Ophthalmol. 2006;244:963–71.
Türkyilmaz K, Oner V, Çiçek Y, Kurt A, Durmus M. Systemic arterial stiffness in patients with pseudoexfoliation glaucoma. J Glaucoma. 2014;23(2):e108–11.
Chiba T, Chiba N, Kashiwagi K. Systemic arterial stiffness in glaucoma patients. J Glaucoma. 2008;17(1):15–8.
Bourouki E, Oikonomou E, Moschos M, Siasos G, Siasou G, Gouliopoulos N, et al. Pseudoexfoliative glaucoma, endothelial dysfunction, and arterial stiffness: the role of circulating apoptotic endothelial microparticles. J Glaucoma. 2019;28(8):749–55.
Bossuyt J, Vandekerckhove G, De Backer TL, Van de Velde S, Azermai M, Stevens A-M et al. Vascular dysregulation in normal-tension glaucoma is not affected by structure and function of the microcirculation or macrocirculation at rest: a case–control study. Medicine. 2015;94(2).
You QS, Freeman WR, Weinreb RN, Zangwill L, Manalastas PIC, Saunders LJ, et al. Reproducibility of vessel density measurement with optical coherence tomography angiography in eyes with and without retinopathy. Retina (Philadelphia Pa). 2017;37(8):1475.
Penteado RC, Zangwill LM, Daga FB, Saunders LJ, Manalastas PIC, Shoji T, et al. Optical coherence tomography angiography macular vascular density measurements and the central 10 – 2 visual field in glaucoma. J Glaucoma. 2018;27(6):481.
Zhang YS, Zhou N, Knoll BM, Samra S, Ward MR, Weintraub S, et al. Parafoveal vessel loss and correlation between peripapillary vessel density and cognitive performance in amnestic mild cognitive impairment and early Alzheimer’s Disease on optical coherence tomography angiography. PLoS ONE. 2019;14(4):e0214685.
Guemes-Villahoz N, Burgos-Blasco B, Perez-Garcia P, Fernández-Vigo JI, Morales-Fernandez L, Donate-Lopez J, et al. Retinal and peripapillary vessel density increase in recovered COVID-19 children by optical coherence tomography angiography. J Am Association Pediatr Ophthalmol Strabismus. 2021;25(6):325. e1-. e6.
Köse HC, Tekeli O. Optical coherence tomography angiography of the peripapillary region and macula in normal, primary open angle glaucoma, pseudoexfoliation glaucoma and ocular hypertension eyes. Int J Ophthalmol. 2020;13(5):744.
Hou H, Moghimi S, Zangwill LM, Shoji T, Ghahari E, Manalastas PIC, et al. Inter-eye asymmetry of optical coherence tomography angiography vessel density in bilateral glaucoma, glaucoma suspect, and healthy eyes. Am J Ophthalmol. 2018;190:69–77.
Li X, Yu Y, Liu X, Shi Y, Jin X, Zhang Y, et al. Quantitative analysis of retinal vessel density and thickness changes in diabetes mellitus evaluated using optical coherence tomography angiography: a cross-sectional study. BMC Ophthalmol. 2021;21(1):1–12.
Lee K, Maeng KJ, Kim JY, Yang H, Choi W, Lee SY, et al. Diagnostic ability of vessel density measured by spectral-domain optical coherence tomography angiography for glaucoma in patients with high myopia. Sci Rep. 2020;10(1):1–10.
Abrishami M, Hassanpour K, Hosseini S, Emamverdian Z, Ansari-Astaneh M-R, Zamani G et al. Macular vessel density reduction in patients recovered from COVID-19: a longitudinal optical coherence tomography angiography study. Graefe’s Archive Clin Experimental Ophthalmol. 2022;1–9.
Lee SC, Tran S, Amin A, Morse LS, Moshiri A, Park SS, et al. Retinal vessel density in exudative and nonexudative age-related macular degeneration on optical coherence tomography angiography. Am J Ophthalmol. 2020;212:7–16.
Liao D, Zhou Z, Wang F, Zhang B, Wang Y, Zheng Y, et al. Changes in foveal avascular zone area and retinal vein diameter in patients with retinal vein occlusion detected by fundus fluorescein angiography. Front Med. 2023;10:1267492.
Kwon J, Choi J, Shin JW, Lee J, Kook MS. An optical coherence tomography angiography study of the relationship between foveal avascular zone size and retinal vessel density. Investig Ophthalmol Vis Sci. 2018;59(10):4143–53.
Kwon J, Choi J, Shin JW, Lee J, Kook MS. Alterations of the foveal avascular zone measured by optical coherence tomography angiography in glaucoma patients with central visual field defects. Investig Ophthalmol Vis Sci. 2017;58(3):1637–45.
Freiberg FJ, Pfau M, Wons J, Wirth MA, Becker MD, Michels S. Optical coherence tomography angiography of the foveal avascular zone in diabetic retinopathy. Graefe’s Archive Clin Experimental Ophthalmol. 2016;254:1051–8.
Armstrong RA. Statistical guidelines for the analysis of data obtained from one or both eyes. Ophthalmic Physiol Opt. 2013;33(1):7–14.
Shahlaee A, Samara WA, Hsu J, Say EAT, Khan MA, Sridhar J, et al. In vivo assessment of macular vascular density in healthy human eyes using optical coherence tomography angiography. Am J Ophthalmol. 2016;165:39–46.
You QS, Chan JC, Ng AL, Choy BK, Shih KC, Cheung JJ, et al. Macular vessel density measured with optical coherence tomography angiography and its associations in a large population-based study. Investig Ophthalmol Vis Sci. 2019;60(14):4830–7.
Richter GM, Lee JC, Khan N, Vorperian A, Hand B, Burkemper B, et al. Ocular and systemic determinants of perifoveal and macular vessel parameters in healthy African americans. Br J Ophthalmol. 2023;107(4):540–6.
Fernández-Vigo JI, Kudsieh B, Shi H, Arriola‐Villalobos P, Donate‐López J, García‐Feijóo J, et al. Normative database and determinants of macular vessel density measured by optical coherence tomography angiography. Clin Exp Ophthalmol. 2020;48(1):44–52.
Huo Y, Thomas R, Guo Y, Zhang W, Li L, Cao K, et al. Superficial macular vessel density in eyes with mild, moderate, and severe primary open-angle glaucoma. Graefe’s Archive Clin Experimental Ophthalmol. 2021;259:1955–63.
Heidarzadeh HR, Abrishami M, Ebrahimi Miandehi E, Shoeibi N, Ansari Astaneh MR, Hosseini SM et al. The central retina vessel density and foveal avascular zone values of 792 healthy adults using optical coherence tomography angiography. Eye. 2024.
Pujari A, Chawla R, Markan A, Shah P, Kumar S, Hasan N, et al. Age-related changes in macular vessels and their perfusion densities on optical coherence tomography angiography. Indian J Ophthalmol. 2020;68(3):494–9.
Leave a Reply